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Abstract 

Sayre's equation and density modification may be 
combined into a single procedure for the direct deter- 
mination of phases or for the determination of elec- 
tron density. The constraints on either the phases or 
the density are expressed in terms of a system of 
non-linear simultaneous equations with twice as 
many equations as unknowns. A method of solving 
these equations is described which combines the con- 
jugate gradient technique with the use of fast Fourier 
transforms (FFT's). This gives the possibility of 
obtaining a least-squares solution of the equations 
for tens of thousands of unknowns using only minutes 
of computer time. It is trivial to add different types 
of electron-density constraint to the system. The use 
of the complete diffraction pattern in the calculations 
makes this method more powerful than conventional 
direct methods of phase determination. Examples of 
phase determination and refinement are given, 
together with an indication of the high quality of the 
resulting maps. 

Introduction 

Direct methods of phase determination have made 
progress by increasing the constraints on the electron 
density or by imposing them more rigorously. For 
inequality relationships (Harker & Kasper 1948), the 
electron density is constrained never to go negative, 
but there is no constraint on the positive density. A 
more powerful constraint is therefore provided by 
Cochran's criterion (Cochran 1952) that j 'pa(x)dV 
is a maximum, which applies to all the density in the 
cell. This criterion is approximately satisfied by hav- 
ing discrete atomic peaks on a smooth background. 
It leads to the phase relationships used in symbolic 
addition (Katie & Katie 1963) and upon which the 
tangent formula is based (Karle & Hauptman, 1956). 
Individual phase relationships take no account of the 
complete probability distribution of their values, so 
this is done by including a weighting scheme in the 
tangent formula (Hull & Irwin, 1978). The tangent 
formula originally used only the strongest E's, but 
more magnitudes, especially the very weak ones, can 
also be used in the modified tangent formula 
described by Debaerdemaeker, Tate & Woolfson 
(1985). All of these have led to more powerful means 
of phase determination. 
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In order to make further progress, additional con- 
straints must be applied. An obvious one is that the 
complete set of magnitudes could be used instead of 
only the very smallest and the very largest. This may 
be achieved by using Sayre's equation (Sayre, 1952) 
instead of the tangent formula. Other constraints are 
those which are already used successfully in density- 
modification techniques such as maximum and 
minimum density values, background smoothing, 
partially known structure or known solvent regions 
for macromolecules. A new constraint has recently 
been added to this list, that of density histogram 
matching described by Zhang & Main (1990a). 

Sayre has already applied his equation to phase 
refinement and extension for a small protein (Sayre, 
1974), but there were no other constraints on the 
electron density. This paper describes how Sayre's 
equation can be used simultaneously with histogram 
matching and other density-modification techniques 
to produce a powerful procedure for phase determi- 
nation and refinement. It is suitable both for small 
molecular structures and for macromolecules. 

The electron-density equations 
Sayre's equation may be written as 

F(h)=[O(h)/V]~, F ( k ) F ( h -  k) (I) 
k 

where O(h) =f(h)/g(h);f(h) -- atomic scattering fac- 
tor; g(h)=scat ter ing factor of squared atom. It 
expresses the fact that the electron density consists 
solely of equal atoms whose shape conforms to the 
scattering factorf(h) and also to g(h) for the squared 
atoms. For real atoms, this means there is no negative 
density. In addition, the atoms can only be equal if 
they are spherically symmetric and they do not over- 
lap, so atomic resolution is assumed. 

Because electron-density constraints are more 
easily expressed in real space than in reciprocal space, 
it is convenient to express Sayre's equation in terms 
of the electron density. Also, the electron density is 
expressed as a discrete function, p(n), evaluated on 
a three-dimensional grid of N points n. Taking the 
Fourier transform of both sides of (1), Sayre's 
equation becomes 

p(n) = ( V~ N) Y~ p2(m) ~/(n- m) (2) 
m 
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where 

@(n) = (1/V) ~ O(h)exp(-E~rih.n). 
n 

The scale factor N in (2) is a matter of definition and 
arises when FFT's are used to perform the convolu- 
tions. Equation (2) expresses the equality of the elec- 
tron density with the squared density convoluted with 
the function ~b(n). Now @(n) is the Fourier transform 
of 0(h), which defines the atomic shape, so this also 
gives the shape of the peaks in p(n). 

The equations representing the density modi- 
fication can be written as 

p(n)=H(n) (3) 

where H(n) is the electron-density map modified 
according the particular density-modification tech- 
niques employed. Specifically, the modifications used 
by the author are the solvent flattening and histogram 
matching as described by Zhang & Main (1990a, b) 
together with background smoothing. The latter is a 
common technique, but it is used here in conjunction 
with histogram matching. A threshold electron 
density level, Pmin, is obtained such that all density 
above this level can be considered to be atomic density 
and the rest regarded as background. The criterion 
for setting this level is that the volume of atomic 
density corresponds to the expected atomic volume. 
The peak density is modified by histogram matching 
and a shift of Ap is applied to the background density 
where 

Ap=O'25p(p/Pmin--1) for 0<p<Pmin 
(4) 

= -0.25p for p < 0. 

This has the effect of shifting all background density 
towards zero without introducing any discontinuities. 
Unless the structure-factor magnitudes are extrapo- 
lated to very high resolution, negative density should 
not be modified to zero. It can quite genuinely be 
negative given the particular magnitudes and reso- 
lution used. The weighting factor of 0.25 in (4) is 
arbitrary, but it is the value which gave the best results 
in trials of the method. Equations (3) are effectively 
non-linear because the actual density modification 
carried out is a complicated function of the density 
which is already present. 

Equations (2) and (3) form a system ot~ non-linear 
simultaneous equations with as many unknowns, 
p(n), as grid points in the asymmetric unit of the map 
and twice as many equations as unknowns. An 
alternative formulation would be to take the Fourier 
transform of both sides of (3) and express it as 

F (h )=  ,.~[ H(n)]. (5) 

We could now solve the system of equations formed 
by (1) and (5) for the unknown phases. Again, there 
are twice as many equations as unknowns. Because 
of the method of solving the equations, described in 

the next section, the computer time is the same no 
matter which formulation of the equations is used, 
but the real-space formulation will be described. 

Solution of  the equations 

A least-squares solution of the system of equations 
(2) and (3) is sought for the unknown electron-density 
values p(n). The Newton-Raphson technique is used, 
the starting point for which is the approximate map 
which was modified to produce H(n) in (3). At the 
very beginning, this could be given by random phases 
for small molecules or an MIR map for macro- 
molecules. 

The equations to be solved for the electron-density 
shifts, 8p(n), are obtained from the Jacobian of (2) 
and (3) as 

2( V~ N) ~, p(m)O(n-m)Sp(m)-  8p(n)= Ap(n) 
m 

where 

8p(n)=AH(n) 
(6) 

by the iteration 

qk =Apk (8a) 

ak = (r[pk/q[qk) (8b) 

X k +  1 ~--" X k -~" Otkp  k ( 8 ¢ )  

S k : ATqk (8d) 

rk+l=rk--akSk (8e) 

= --(rk+lSk/qkqk) (Sf) ~ k T T 

Pk+l = rk+l + flkPk. (8g) 

The number of iterations required for an exact solu- 
tion is equal to the number of unknowns. However, 

Ap(n) = p ( n ) -  V~ N ~ p2(m)~(n- m) 
m 

AH(n)=p(n) -H(n) .  

The equations (6) may easily contain tens of 
thousands of unknowns and setting up the normal 
matrix of least squares could take about 100 years of 
computer time at the rate of 106 multiplications per 
second. This can be completely avoided by using 
the conjugate-gradient technique for solving the 
equations which does not require the normal matrix 
at all: 

To obtain the least-squares solution of 

Ax=b,  (7a) 

start from the trial solution Xo, which may be the null 
vector, then form 

ro-- AT(b - Axo) (7b) 

Po = ro. (7c) 

Now start with k = 0 and improve the trial solution 
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acceptable solutions are normally obtained after very 
few iterations, thus saving an enormous amount of 
time. Note that the normal matrix never appears 
explicitly, although it is implicit in (7b) and (8d). 
Most of the work of calculation comes in forming 
the matrix-vector products in (7b), (8a) and (8d). 
These can be expressed as convolutions and per- 
formed using FFT's, thus saving considerably more 
time. 

With Xo = 0, (7b) becomes ro = Arb where A is the 
1.h.s. matrix and b the r.h.s, vector of (6). The solution 
of (7a) then represents the shifts 8p(n) to be applied 
to the electron density. The residual vector ro is calcu- 
lated as follows: 

let 

then 

and 

G(h)=(V/N) Ep2(m) exp(27rih.m) (9a) 
In 

AF(h) = F(k)-O(h)G(h) (9b) 

Ap(n)=(1/V) ~ AF(h) exp(-27rih.n) (9c) 
n 

giving the nth component of ro as 

ro(n)=(2/V)p(n) ~ O(h)AF(h) exp (-27rih.  n) 
h 

-Ap(n)+aH(n). (9d) 

Thus, three FFT's in (9a), (9c) and (9d) are required 
to calculate ro. On the way, (9b) gives the residual 
of Sayre's equation. 

The calculation ofqk in (8a) is achieved in a similar 
manner: 

let 

a(h)=(V/N)~p(m)pk(m)exp(27rih.m) (10a) 
ill 

and 

b(h)=(V/N) ~pk(m)exp(27rih.m) (10b) 
i111 

where pk(m) is the ruth component of the vector Pk. 
Then 

l = L]~-~7~)-J (10c) 

where the vector qk is partitioned as shown. 
Similarly, S k in (8d) is obtained from 

Sk(n)=(2/ V)p(n) ~ O(h)[2a(h)O(h)-b(h)] 
h 

x exp ( -2r r ih .  n ) -  Qk(n)+ pk(n) 

where Qk(n) is defined in (10c). 

(11) 

The remaining calculations in (8b), (8c), (8e), (8f) 
and (8g) require either the inner product of a pair of 
vectors or a linear combination of vectors, both of 
which are very quick to calculate. Each iteration of 
the conjugate-gradient technique is therefore seen to 
require the four FFT's described in (10) and (11). 

The criterion for stopping the iterations is that the 
length of the residual vector rk should have decreased 
by a factor of 100 from the original ro. This normally 
takes less than ten iterations even when there are tens 
of thousands of unknowns. One complete iteration 
of the full-matrix least-squares process therefore 
requires between 30 and 40 FFT's. This can be 
achieved in minutes, as opposed to the 100 years of 
computer time hinted at earlier. The electron-density 
shifts, 8p(n), obtained in this way are applied to the 
electron density to produce an improved map. 

The final stage in the cycle is to calculate structure 
factors from the improved map and calculate their 
Sim weights. When MIR phases are available, they 
are combined with the new phases, taking their 
weights into account. Finally, a weighted electron- 
density map is calculated, using the observed magni- 
tudes, to start the next cycle of map improvement. 

Diagonal approximation 
One of the most obvious ways of speeding up the 
calculation of the electron-density shifts is to use the 
diagonal approximation to the normal matrix. As with 
the full-matrix calculation, it can be done entirely by 
FFT's and linear combinations of vectors: 

given the overdetermined system of equations 

Ax=b ,  (12a) 

the least-squares estimate of x is given by solving 

ArAx = ATb. (12b) 

If A is the 1.h.s. matrix and b the r.h.s, vector of (6), 
then x represents the electron-density shifts 8p(n). 

The right-hand side of (12b) is identical to the 
residual vector ro which was calculated in (9). It only 
remains to calculate the diagonal element of ATA. 
The required expression can be shown to be 

(13) 

So the electron-density shifts are calculated from 

8p(n) = ro(n)/ao(n). (14) 

The calculation of ro takes three FFT's. Two more 
FFT's are required to impose the observed magni- 
tudes on the next map as described at the end of the 
last section. Thus five FFT's are needed for each 
iteration of the diagonal approximation. This makes 
it about seven or eight times faster than the full-matrix 
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calculation and this difference in speed is actually 
observed. 

The scale factor O(h) 

The calculation of AF(h) in (9b) is critically depen- 
dent upon the value of the scale factor 0(h), which 
is defined in (1). It was found that this expression 
gave the correct shape for the function O(h), but that 
the absolute value is a sensitive function of resolution. 
It is necessary therefore to calculate and apply a linear 
overall scale factor to O(h) to match the magnitudes 
of F(h) and O(h)G(h). As a further convenience, it 
was assumed that the atoms were Gaussian in shape 
so a formula could be obtained for 0(h): 

for an atomic scattering factor of 

f (S)  = A exp ( -aS  2) (15a) 

it can be shown that 

g(S)=AE[Tr/(2a)]a/Eexp(-aS2/2) (15b) 

so that 

0(S) = I f (S) /g(S) ]  = (1/A)(2a/7r) 3/2 exp (-aS2/2) 

(15c) 

where 

S = (sin ~9)/h-  Ihl/2. (15d) 

Fitting a Gaussian of the form (15a) to the scatter- 
ing factor of nitrogen gave A = 6.53 and a = 1.87 for 
0.0< $2<0-5, hence O(S) from (15c). Refinement of 
these parameters using Sayre's equation with correct 
phases for an equal-atom structure showed that A 
was sensitive to resolution and that the value of a 
was close to that determined theoretically. 

An alternative way of obtaining O(h) is by setting 
up Sayre's equation for a similar but known structure 
at the same resolution. The scale factor can be deter- 
mined as a function of (sin ~9)/h by spherical averag- 
ing. This method has been employed for macro- 
molecules. 

Since O(h) depends upon atomic shape, (15c) is 
only accurate at high resolution. At very low resolu- 
tion, O(h) becomes highly structure dependent and 
cannot be predicted. However, for a resolution higher 
than about 3.0/~, (15c) gives acceptable results. 

Method 

To test the ability of the proposed technique to deter- 
mine and refine phases, the following scheme was 
used: 

(a) Start with exact phases for a selected number 
of the strongest reflexions, i.e. all those with magni- 
tudes greater than Fmi.. 

(b) Calculate the electron density using all known 
phases and weighted observed magnitudes. 

Table 1. Details of enniatin B used as the test structure 

Molecular formula: C33H57N30 9 
a=29.28, b=28.29, c=10.84/~, y=121.1 ° 
space group= P21, c-axis unique, Z=8 
180 non-H atoms per asymmetric unit 

(c) Modify the electron density by density his- 
togram matching (Zhang & Main, 1990a) and back- 
ground smoothing (4). This produces the map H(n) 
in (3). 

(d) Solve (2) and (3) for the unknown electron 
density, starting from the approximate density calcu- 
lated in (b). All reflexions not included in the density 
calculated in (b) are given a magnitude of zero. 

(e) Calculate structure factors from the latest elec- 
tron density together with their Sim weights. 

( f )  For phase determination, lower Fmi, and 
accept all phases ~p(h) for which [F(h)[ > Fmi n. For 
phase refinement, keep Fmi n the same. 

(g) Repeat from (b) until all phases have been 
determined and refined. 

The rate at which new reflexions are accepted at 
step (e) is governed by the increase of variance they 
bring to the electron-density map. The values of Fmi n 

are chosen to increase Y. [F(h)[ 2 by constant amounts, 
where the F's included in the summation are those 
used to calculate the map. 

Results 

The power of phase determination given by Sayre's 
equation with electron-density constraints has not yet 
been fully explored. Most of the tests done to date 
have been to confirm the validity of the mathematical 
techniques. However, promising results have been 
obtained, some of which are presented here. The work 
on phase refinement and extension for macro- 
molecules is presented in the following paper by 
Zhang & Main (1990b). 

Calculations were carried out on the known struc- 
ture of enniatin B, the details of which are presented 
in Table 1. Observed F's, sharpened by removing the 
overall temperature factor, were used and all calcula- 
tions were performed at 1.1/~ resolution. It was found 
that the full-matrix calculation gave only marginally 
better results than the diagonal approximation. Since 
the latter is about eight times faster, the diagonal 
approximation was used almost exclusively. For a 
comparison between the two types of calculation, see 
Zhang & Main (1990b). 

Two examples of phase determination and 
refinement are shown in Table 2. The weights used 
in the calculation of the weighted mean phase error 
are the [F(h)[ and the mean is taken over all reflexions 
in the data. The mean phase error for the strongest 
reflexions is less than half that shown in the Table. 
The R factor is between the observed magnitudes and 
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Table 2. Results of  phase determination and refinement on the test structure, starting from exact phase values 

N u m b e r  o f  N u m b e r  o f  N u m b e r  o f  N u m b e r  o f  
s t a r t i n g  s t ages  o f  cyc l e s  o f  p h a s e  p h a s e s  W e i g h t e d  m e a n  F i n a l  

r e f l ex ions  p h a s e  e x p a n s i o n  r e f i n e m e n t  d e t e r m i n e d  p h a s e  e r r o r  R f a c t o r  

200 7 5 6500 19.9 ° 13-2% 
100 17 20 6500 19"2 ° 15.4% 

those calculated from the map. Even better results 
can normally be obtained by performing the phase 
determination in smaller stages and using more of 
them. It is clear that the phases are very good and 
this was confirmed by looking at the final electron- 
density map for the first entry in Table 2. With the 
peaks numbered in decreasing order of height, the 
highest spurious peak was 178, the lowest atomic 
peak was 182 and only one atom was missing from 
the map out of the 180 expected. 

Another measure of the quality of the map was 
obtained almost by accident. Only after the structure 
had been solved was it realised that some strong 
low-angle reflexions were completely missing from 
the data, including the strongest reflexion in the whole 
diffraction pattern. To deal with these during phase 
determination and refinement, their magnitudes and 
phases were calculated along with all the other 
reflexions and these values were used in the calcula- 
tion of the next map. However, no weights could be 
calculated and no direct restrictions placed on the 
magnitudes so obtained. The magnitudes and phases 
obtained from the final map are shown in Table 3. 
The agreement with the structure factors calculated 
from the atomic coordinates is astonishing. The R 
factor for the magnitudes shown is 4.2% and the 
weighted mean phase error is 3.40 . 

Discussion 

One reason why the phases are so accurate in the 
present method when compared with those obtained 
from more conventional direct methods is that the 
complete diffraction pattern is used in the calcula- 
tions. This gives smoother electron-density maps with 
better peak shapes which, in turn, leads to better 

• density modification. At the beginning of the calcula- 
tion, however, not all phases are used. It was found 
that significantly better results were obtained when 
the missing reflexions were entered into the calcula- 
tions with zero magnitude than when they were left 
out completely. Leaving them out places no restriction 
on their magnitudes. Putting them in as zero forces 
them at least to be smaller than those already present 
and a value of zero is a good approximation to the 
correct magnitude for most of the reflexions. 

Equations (2) and (3) have been given equal weight 
in the formulation of their solution in (9), (10) and 
(11). This need not be the case and different weights 
can be given to Sayre's equation and the various types 
of density modification. From the small number of 

Table 3. Low-resolution reflexions missing from the 
original data but calculated from the final map as Fm~p 
and ~map; they are compared with the structure factors 

calculated from the known structure 

h k l Fma p ~map fc ~c AF A~ 
0 0 2 282 194 280 203 2 9 
0 1 0 11 360 29 180 18 180 
0 2 0 276 360 270 360 6 0 
0 2 1 238 194 249 191 11 3 
0 4 1 293 358 287 2 6 4 
1 - 1  0 12 180 19 180 7 0 
1 - 1  2 520 113 522 113 2 0 
1 0 2 296 197 279 204 17 7 
2 - 2  0 159 360 165 360 6 0 
2 - 2  1 351 14 356 11 5 3 
2 0 0 438 360 385 360 53 0 
2 1 2 265 110 268 105 3 5 
2 2 0 274 180 277 280 3 0 
4 - 4  0 305 360 325 360 20 0 
4 - 2  1 229 187 229 188 0 1 
4 0 0 264 180 248 180 16 0 

trials already carried out, it appears that different 
weights are either unnecessary or have little effect. 

In an effort to speed up the computer calculations, 
the grid of the electron-density map was made slightly 
more coarse than the maximum reflexion indices 
required. Even though the reflexions which were thus 
cut off were never used, this immediately led to very 
poor phase determination at high angles. The errors 
fed back into the rest of the reflexions and substan- 
tially degraded the quality of all the phases. This is 
a well known phenomenon in signal processing, 
called aliasing. It should be carefully avoided in these 
calculations because the phases are particularly sensi- 
tive to it. 

Since the phases determined by this method are 
very accurate, given a good starting point, the ques- 
tion arises whether good phases could be determined 
from very inaccurate starting values. In other words, 
could this phase-determination procedure be success- 
ful in a Monte Carlo (multi-solution) technique? This 
has yet to be determined, but trials of this approach 
will soon be carried out, both for small molecular 
crystals and for small proteins. 

The method of phase determination and refinement 
described here may be regarded as a development of 
Sayre's own work on the phase refinement of 
rubredoxin (Sayre, 1974). However, additional con- 
straints have been placed on the electron density and 
the technique used for solving the equations gives 
acceptably short computing times. For example, the 
times for the calculations described in Table 2 were 
14 and 35 min respectively on an Inmos T800 trans- 
puter controlled by an IBM PC-compatible host. 
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Because of the completely general way in which 
the electron-density constraints can be applied, it is 
very easy to incorporate almost any other kind of 
constraint into the method. An obvious example of 
this is when a structure is partially known, e.g. the 
main chain of a macromolecule. The known density 
can be enforced on the map as part of the density 
modification and the remaining density determined 
along with the known density. An alternative 
approach would be to subtract the known density 
from the map and to determine the remaining density 
as a smaller structure. It is intended to try both of 
these developments of the method. 

The most efficient way to propagate knowledge of 
phases throughout the reciprocal lattice is to use 
normalized structure factors, E's, rather than 
observed structure factors, F's. However, if E's are 
used, the map is subject to large series-termination 
errors and a considerable amount of negative density 
is produced. The background smoothing will get rid 
of this and, in so doing, extrapolate the E's to higher 
resolution. The extrapolated E's should be used in 
the calculation of the next map or the negative density 

will reappear. There are therefore two ways of pro- 
ceeding with the calculations. One is to use F's, which 
produce no series-termination errors, and perform 
the calculations at the observed resolution. The other 
way is to use E's and perform the calculations at a 
suitably high resolution with extrapolated data, as is 
normally done in maximum-entropy calculations. 
This will increase the computing time considerably. 
The author has chosen to use F's to keep the comput- 
ing time short, although the possibility of using E's 
needs to be investigated properly. 
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Abstract 

A new method for phase refinement and extension, 
which combines Sayre's equation with solvent flatten- 
ing and histogram matching, has been developed. 
Equations which express electron-density constraints 
are solved using discrete Fourier transforms to give 
a new approximation to the electron density. The 
formulation of the equations is in real space, which 
allows any set of constraints to be entered directly 
into the calculation. An application to the known 
structure of 2Zn insulin refined the 3 A MIR phases 
from a mean phase error of 46 to 39 ° and extended 
the phases to 2 A resolution with a mean overall phase 
error of 57 ° . Analysis of the phase errors shows that, 
for the strong reflexions, the new method determines 
phases with half the mean error of MIR phases. 

Introduction 
The dominant method in the determination of 
macromolecular structures is that of multiple isomor- 
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phous replacement (MIR). The phases obtained by 
MIR suffer from inaccuracies due to experimental 
error and lack of isomorphism and they are not always 
determined to the full resolution of the native data. 
All of this detracts from the quality of the electron- 
density map and may lead to difficulties in its interpre- 
tation. Thus, the ability to improve the quality of the 
MIR phases and to extend them to the full resolution 
of the native data would be a valuable contribution 
to protein crystallography. 

The most successful technique of phase refinement 
and extension uses density modification. In its various 
forms it applies constraints to the electron density 
such as positivity, atomicity, boundedness, solvent 
flatness, connectivity and non-crystallographic sym- 
metry. For a review, see Podjarny, Bhat & Zwick 
(1987). A recent addition to density modification is 
the histogram matching of Zhang & Main (1990) 
which imposes the correct electron-density histogram 
on the map. When combined with solvent flattening 
(Wang, 1985), it successfully refined the 1.9 A MIR 

O 1990 International Union of Crystallography 


